Two articles from new new issue of Building Simulation sound particularly interesting:
Comparing computer run time of building simulation programs, by Tianzhen Hong, Fred Buhl, Philip Haves, Stephen Selkowitz and Michael Wetter.
This paper presents an approach for comparing the computer run time of building simulation programs. The computing run time of a simulation program depends on several key factors, including the calculation algorithm and modeling capabilities of the program, the run period, the simulation time step, the complexity of the energy models, the run control settings, and the software and hardware configurations of the computer used to run the simulation. To demonstrate this approach, we ran simulations for several representative DOE-2.1E and EnergyPlus energy models. We then compared and analyzed the computer run times of these energy models.
DeST—An integrated building simulation toolkit Part II: Applications, by Xiaoliang Zhang, Jianjun Xia, Ziyan Jiang, Jiyi Huang, Rong Qin, Ye Zhang, Ye Liu and Yi Jiang.
This is the companion paper of part I of DeST overview. DeST was developed as a building simulation tool with the aim of benefiting both design of and research on building energy efficiency. During its development, DeST has been applied to many projects, development of building regulations, and research. This paper gives examples of several areas in which DeST has been applied, including building design consultation, building commissioning, building energy conservation assessment, a building energy labeling system, and scientific research. Examples from a demonstration building are presented to demonstrate the entire process of aiding design with DeST. Additional projects and regulations are also mentioned to introduce other applications of DeST.